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We examine the complex band structures and effective medium descriptions of a periodic acoustic composite
system. It is shown that if the system exhibits a negative velocity band, the assignment of the system as a
phononic crystal or as a “double negative” metamaterial is unambiguous only in some cases. An example is
given where the system properties can be tuned gradually and continuously from an acoustic metamaterial to
a phononic crystal, and there is no sharp dividing line between these two regimes.
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In some electromagnetic �EM� metamaterials1 and photo-
nic crystals,2 EM waves bend negatively and consequently a
negative index of refraction can be assigned to such materi-
als. The origin of negative refractive index of metamaterials
is usually interpreted as the permittivity and permeability are
negative simultaneously �so called “double negative”� and
that of photonic crystals is usually attributed to band folding.
Most metamaterials are realized as periodic arrays of reso-
nating units, and their wave properties can be described us-
ing band structures just as the case of photonic crystals. In
both cases, their band structures can carry bands with nega-
tive slope. The key distinction between the two systems is
that the former can be homogenized, in the sense that effec-
tive constitutive parameters can be meaningfully extracted
and used, whereas the latter cannot. However, there is con-
troversy on whether a periodic composite can be
homogenized.3,4

Recent works demonstrated that a two-dimensional �2D�
photonic crystal with high-permittivity dielectric rods exhib-
its double negative behavior.5,6 It is interesting whether a
distinct boundary exists between the two regimes of photonic
crystals and EM metamaterials, if one changes the permittiv-
ity gradually. The 2D wave equations for acoustic waves and
EM waves are equivalent, with the mapping of variables as
�Ey ,Hx ,Hz ,�y ,�x ,�z�↔ �p ,−vz ,vx ,�−1 ,�z ,�x� �with pres-
sure p, particle velocity v, bulk modulus �, and mass density
��. A high-permittivity dielectric rod in EM waves is equiva-
lent to a low-modulus rod in acoustics and it has been dem-
onstrated that an acoustic composite consisting of low-
modulus inclusions exhibits negative � and �
simultaneously.7 There are also other means to create nega-
tive � or � separately.8 Phononic crystal is the counterpart of
photonic crystal.

In this paper we construct an acoustic model system
which is tuned gradually by changing one single parameter.
As the change in parameter changes the system from a
metamaterial to a phononic crystal, the description of ho-
mogenization goes from nearly perfect to marginally mean-
ingful, but there is no sharp transition. There exists an inter-
mediate regime where the system properties are somewhere
between acoustic metamaterials and phononic crystals, and
the assignment to either one category would become some-
what arbitrary. The general conclusion reported here holds
true for EM waves.

We consider 2D acoustic composites consisting of a
square lattice of fluid cylinders. There are frequency regions
�band gaps� where the wave is evanescent so the wave num-
ber is complex. Basically there are two types of band gaps,
one is from Bragg-like multiple scattering, and the other is
from the coupling of resonators. We shall examine their com-
plex band structures and see if there are obvious differences
that can distinguish the two origins of gaps. The complex
band structure is a relation between the complex wave num-
ber �wave vector� and the frequency. The complex band
structure can be calculated by the layer-multiple scattering
method �L-MST�.9,10 We will also show results calculated by
the multiple scattering method �MST� �Ref. 11� to check the
consistency for pass bands. In the L-MST method, we show
the smallest nonzero value of the imaginary values of the k
vector inside the gaps.

The band structures are typically displayed using the re-
duced zone scheme. If we want to assign a negative refrac-
tive index to a system that exhibits a negative group velocity
band, it is meaningful only if the wave function has strong
amplitude in the first Brillouin zone �BZ�. It may not be the
case if the negative band is a simple geometric artifact of
zone folding. This can of course be achieved by examining
the Bloch wave functions. Alternatively, we can use effective
medium theory �EMT� as a guide. If band dispersions com-
ing from effective medium parameters agree quantitatively
with the exact band structures near the zone center, then the
assignment of a negative index is by definition meaningful.
In particular, any material that can be claimed to be a
metamaterial should imply that the effective medium param-
eters provide a quantitative description near the zone center.
We thus put emphasis on comparing the exact band struc-
tures with EMT results.

Following the EMT in Ref. 12 �assuming that the scatter-
ing of the cylinder is dominated by its monopolar and dipolar
channels�, we obtain the expressions which relate the
frequency-dependent effective bulk modulus �e���, effective
mass density �e���, and effective wave number Ke��� as

�e

�0

k0

Ke

Jm�Ker0�
Jm� �Ker0�

=
Jm�k0r0� + DmHm

�1��k0r0�

Jm� �k0r0� + DmHm
�1���k0r0�

, m = 0,1,
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Ke = ���e/�e, �1�

where �r0
2=a2 �a is lattice constant� and Dm is the Mie scat-

tering coefficients for angular momentum channel m. The
wave number in the host is k0=���0 /�0, where �0 and �0 are
the mass density and bulk modulus of the fluid host. Jm�x�
and Hm

�1��x� are the Bessel function and Hankel function of
the first kind, respectively. For a cylinder with radius rs, mass
density �s and bulk modulus �s=�scs

2 �cs denotes the longi-
tudinal velocity�, the Mie coefficients can be found in Ref.
13. When Ker0�1 with the small argument approximation12

for Jm�Ker0� and Jm� �Ker0� in Eq. �1�, we can further see that
�e��� and �e��� are directly related to monopolar �m=0� and
dipolar �m=1� channels, respectively. Instead of the small
argument approximation, we solve Eq. �1� directly by search-
ing complex roots to obtain �e���, �e���, and Ke���.

In the following, we will first discuss two model systems
that have spectral gaps. In the first case �Fig. 1�, the gaps are
due to Bragg scattering, and in the second case �Fig. 2�, the
gaps are due to resonances. We will show that the two types
of gaps can be distinguished by examining the trajectory of

the real and imaginary part of the wave vector inside the
gaps.

Figure 1 shows the complex band structure for a square
lattice of fluid cylinders �with rs=0.25a, �s=20000 kg /m3,
and cs=5000 m /s� in water �with �0=1000 kg /m3, and c0
=1490 m /s�. In high-cs systems, the lowest frequency gaps
are typically the consequence of Bragg scattering. Inside the
gap the k vector is a complex number Ka=�+ iKi character-
ized by a real part pinned at the zone boundary and an imagi-
nary part Ki that is continuous and smooth across the whole
gap, with a maximum value near the mid gap. Such charac-
teristics are indeed verified by the complex band structure
calculated by L-MST �thick lines�. The regions of the Bragg
gaps are shaded by light gray color. For comparison, we
extracted the dispersion curves Ke��� from EMT according
to Eq. �1� �shown as thin lines�. The EMT results can repro-
duce very well the dispersion of the first band �Re�Ka /2��
	0.5�, and this agreement is consistent with the general ar-
gument that the first band is in the first BZ in the extended
zone scheme. EMT breaks down completely beyond the first
band, as expected. We thus note that a typical Bragg gap is
characterized by the pinning of the real part of Ka at the zone
boundary throughout the gap, a continuous and smooth
variation of the imaginary part of Ka, and the failure of EMT
to describe quantitatively the dispersion near the gap.

Now turn to typical resonance gaps, which occur as a
result of the hybridization between the flat bands �originating
from coupling of resonant modes of individual cylinders�
and the continuum bands �corresponding to longitudinal
propagation in an effective homogeneous medium�.14 The
model system is the same as that shown in Fig. 1, but with
cs=100 m /s. The slower wave speed means shorter wave-
length inside the cylinder which induces Mie resonances at
lower frequencies. The complex band structure calculated by
L-MST is plotted as thick lines in Fig. 2�a�. The two reso-
nance gaps are shaded in light gray. The first gap can be
traced to a monopolar Mie resonance of the single cylinder
and the second gap corresponds to a dipolar Mie resonance.
The real part of the complex wave number is Re�Ka�=� for
the lower frequency part of both gaps, but jumps to
Re�Ka�=0 at a certain frequency inside the gap. Similar fea-
tures were reported in Ref. 15. The real part of Ka has a
sudden jump inside both resonance gaps, in contrast to the
pinning of Ka at the zone boundary for Bragg gaps. In Fig.
2�b� the imaginary part of the complex band structure is
shown as thick lines. While the curve is continuous, the tra-
jectory has a cusp at which the slope changes abruptly at the
frequency where the real part jumps from the zone boundary
to the zone center. This is in contrast to the smooth variation
in Im�Ka� for Bragg gaps. The dispersion curves Ke��� from
EMT �Eq. �1�� are plotted as thin lines for comparison with
the exact band structures in Figs. 2�a� and 2�b� for the real
part and the imaginary part respectively. In contrast to the
failure of EMT after the first band in the case of Bragg gaps
�Fig. 1�, EMT now gives the correct salient features. In par-
ticular, EMT results exhibit the abrupt change in Re�Ka� and
the discontinuity of the slope of Im�Ka�, although the fre-
quency at which this happens is slightly off in the first gap.
This is not surprising since EMT is not expected to work
quantitatively very close to a resonance and far away from

FIG. 1. �Color online� Complex band structure along 
-X direc-
tion for a square lattice of cylinders �with radius rs=0.25a, mass
density �s=20000 kg /m3, and longitudinal velocity cs=5000 m /s�
in water, �a� the real part, and �b� the imaginary part. Only the
nondeaf modes �those excitable by normal incidence due to sym-
metry� are shown for L-MST. The frequency gaps are shaded in
light gray.

FIG. 2. �Color online� Complex band structure along 
-X direc-
tion for a square lattice of cylinders �the same cylinder as in Fig. 1
but with cs=100 m /s� in water, �a� the real part, and �b� the imagi-
nary part. �c� Effective bulk modulus �0 /�e. �d� Effective mass
density �e /�0. The frequency gaps are shaded in light gray.
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zone center. In particular, the EMT results can reproduce
quantitatively the dispersion of all the pass bands
�Re�Ka /2��	0.4�. The fact that EMT gives a quantitative
description for the pass bands indicates that for these pass
bands wave functions have strong amplitudes inside the first
BZ, and thus the assignment of effective parameters are
meaningful and the wave properties can be meaningfully
called “metamaterial” properties. The flat band near fa /c0
=0.16 is for transverse modes which appear when �e=0
�deaf band�.

The effective bulk modulus �0 /�e and effective mass den-
sity �e /�0 extracted using EMT �Eq. �1�� are shown in Figs.
2�c� and 2�d�. Inside the lower frequency gap, the real part of
�e is negative, while the real part of �e is positive. This
frequency region corresponds to a negative modulus system
giving rise to a forbidden gap �consistent with the monopolar
resonance�. In the higher frequency gap, the real part of �e is
positive, while the real part of �e is negative. This frequency
region corresponds to a negative density system giving rise
to a forbidden gap, consistent with the dominance of the
dipolar response in this regime. We note that the effective
parameters from Eq. �1� are real when the system is lossless.
The imaginary part of �0 /�e and �e /�0 �of opposite signs�
inside the frequency regions with Re�Ka�=� should not be
interpreted as loss or gain, and this corresponds to the so-
called resonance-antiresonance coupling in Ref. 16. This ac-
tually manifests the necessity for EMT to break down in the
frequency region near the zone boundary, where the waves
see periodic structures, and very close to the resonance,
where the effective wavelength is small. The effective pa-
rameters from Eq. �1� quantitatively agree with those ob-
tained by a retrieval procedure.16

The negative modulus �monopolar� and negative density
�dipolar� resonances gaps are separated in frequency in the
system shown in Fig. 2. We now reduce the speed inside the
cylinder further to cs=60 m /s �see Fig. 3�. This will bring
down the frequency of both resonances, but now the two
resonances overlap over a certain range of frequencies. Com-
pared with Fig. 2�a� we see that the new feature in Fig. 3�a�
is a band with negative slope �the light gray shaded area�.
This manifests that double negativity gives rise to negative
bands in acoustic metamaterials.7 The coincidence of mo-
nopolar and dipolar resonances should be the key reason for
the “double negativity.” We also see that EMT can reproduce

well this negative band, and thus this band is in the first BZ
in the extended zone scheme. That is to say, this negative
band appears as a result of both effective bulk modulus and
effective mass density are negative �see Figs. 3�c� and 3�d��.
The flat band above the negative band again corresponds to
�e=0.

In photonic/phononic crystals, the effect of periodicity is
emphasized and the existence of negative slope bands is at-
tributed to Bragg scattering, while in metamaterials, the ef-
fect of resonance is emphasized. Below we construct an
acoustic model whose properties can be tuned continuously
from “double negative” acoustic metamaterials to phononic
crystals. The system is again a simple square array of cylin-
ders with rs=0.25a. The density of the cylinder is assumed to
be the same as that of water for simplicity. The longitudinal
wave velocity of the cylinder, cs, is the only parameter that is
changed. It is increased gradually to monitor the change in
their band structures, and the agreement with EMT results.

The results are summarized in Fig. 4. The left and middle
panels show the complex band structures, with the open
circles calculated by MST, thick lines by L-MST, and thin
lines are for dispersion curves from EMT �Eq. �1��. The right
panels show �0 /�e and �e /�0 extracted from EMT �real part
only�. Since EMT has limited validity in the frequency re-
gion with Re�Ka�=� as discussed above, we do not show
the effective parameter results given by EMT in this fre-
quency region �shaded by dark gray�. The value of cs varies
from a low value of cs=50 m /s in Fig. 4�a� to a moderate
value of cs=1000 m /s in Fig. 4�d�. Regardless of the scales
of the vertical axes in Figs. 4�a�–4�d�, the first two bands
have similar features, with the first band having a positive
slope and the second band having a negative slope, separated
by a gap. Inside this gap, the imaginary part of the complex
wave number is always smooth and continuous, similar to

FIG. 3. �Color online� The same as Fig. 2 but with cs

=60 m /s. The frequency region with double negativity is shaded in
light gray.

FIG. 4. �Color online� A square lattice of cylinders in water,
with longitudinal velocity of the cylinders as �a� cs=50 m /s, �b�
cs=200 m /s, �c� cs=400 m /s, �d� cs=1000 m /s. The radius of
cylinders is rs=0.25a. Left panel is the real part of the complex
band structure. Middle panel is imaginary part of the complex band
structure from L-MST. Right panel is �0 /�e and �e /�0 from EMT.
The values of �0 /�e in �a� and �b� are divided by 50 and 5,
respectively.
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the one shown in Fig. 1�b�, and the real part is Re�Ka�=�.
This is true for all four cases, even for cases like Fig. 4�a�
where resonances dominate the physics.

We would like to compare Fig. 4�a� with Fig. 3�a�. The
coincidence of resonances leads to a negative band in both
systems. However, in Fig. 3�a�, the gap below the negative
band has the characteristic of a resonance gap, but in Fig.
4�a�, the gap below the negative band has the characteristic
of a Bragg gap. We thus cannot use the gap characteristic to
judge unambiguously whether we have a “double negative”
medium.

In Figs. 4�a�–4�c�, the effective dispersion curves from
EMT can reproduce quantitatively all the bands with
Re�Ka /2��	0.3. In addition, �e��� and �e��� shown in the
right panels exhibit simultaneous negative values in the fre-
quency range where the negative band exists �the light gray
shaded areas�. In these situations, the EMT gives quantitative
description, meaning that the effective parameters are physi-
cally meaningful, and in addition, the negative band is the
consequence of “double negativity.” We note that the third
band, which is just above the negative band, is nearly non-
dispersive for Fig. 4�a�, but there is a noticeable dispersion
of this band in Fig. 4�d�. Examining the effective parameters,
shown in the right panels of Figs. 4�a� and 4�d�, we found
that the existence of the flat band coincides with �e=0, which
allows for a transverse mode solution. In Fig. 4�d� the effec-
tive dispersion curve can reproduce quantitatively only the
first band with Re�Ka /2��	0.4. Although there is a fre-
quency region in which �0 /�e and �e /�0 given by EMT are
both negative, the corresponding effective dispersion curve
does not agree with the band structure. The absence of the
flat band due to the zero effective parameter is another fea-
ture that distinguishes Fig. 4�a� from the situation in Fig.
1�a�.

We can of course go to even higher values of cs, and the
deviation of the effective parameters description will be even
more conspicuous. However, the point we want to emphasize
here is that the transition from cs=50 m /s to cs
=1000 m /s is in fact a rather smooth transition. There is a
lack of a really sharp dividing line. One useful yardstick
would be the use of EMT. If effective parameters, as ex-
tracted from Eq. �1�, can reproduce quantitatively the nega-
tive bands near the zone center, then the system can be safely
referred to as a “double negative metamaterial.” The exis-
tence of flat bands that can be traced to zero values of effec-
tive mass density is another characteristic for acoustic waves
�but not necessarily for elastic waves�. We may say that the

distinction between acoustic metamaterials and phononic
crystals are unambiguous only in certain cases such as those
in Figs. 4�a� and 4�d�, at least in this model system we
choose to illustrate the physics. There is always an interme-
diate regime in which the distinction is blurred. Even for the
situation in Fig. 4�d�, which corresponds to a typical
phononic band gap system, the EMT results are still qualita-
tively correct to some extent. In this particular geometry, the
lowest gap originates from the m=0 scattering, and the
Bragg gap does not deviate too much from the m=0 Mie
resonance of a single cylinder. But as the effective wave-
length is no longer larger than the size of the inclusion, the
dispersion of the negative band cannot be given correctly by
EMT, as shown in Fig. 4�d�. The effective medium only
knows about the scattering of a single scatterer in an aver-
aged background and cannot predict collective �Bragg� scat-
tering effect, and as such, the gap size is wrong.

The physics is also tied to the length scale. When the
background wavelength is much larger than the lattice con-
stant, homogenization of the composite to extract effective
parameters is physically meaningful. The negative-slope
band in Fig. 4�a� corresponds to a /��0.05, we can well
assign this case to a regime of double negative metamaterial.
In the opposite regime of phononic crystals, as in the cases
of Fig. 4�d�, a and � are of the same order, and the negative
effective parameters extracted by EMT start to lose those
useful physical meaning. In Figs. 4�b� and 4�c�, EMT can
predict reasonable results. When cs of the cylinders is in-
creased gradually as in Figs. 4�a�–4�d�, the negative-slope
band moves to a higher-frequency range and the composite
changes from a double negative metamaterial to a phononic
crystal continuously.

In conclusion, we examined the characteristics of band
structures for phononic crystals and acoustic metamaterials
based on a model with 2D cylinders in water and compared
results with parameters extracted using the effective medium
theory. Resonance gaps and Bragg gaps possess distinguish-
able complex band structures. However, when two types of
Mie resonances are combined to form double negative
acoustic metamaterials, no universal feature can be found for
gaps near the resulting double negative band. We further
considered a model where the system can be tuned gradually
by changing just one parameter, and the system transforming
gradually from an acoustic metamaterial to a phononic crys-
tal. There is no distinct boundary between these two regimes.
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